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Introduction

Calcium serves as an important signaling molecule that
modulates diverse cellular processes. Elevation of cyto-
solic Ca2+ (Ca2+

i) follows the activation of many cell
surface receptors as well as depolarization of neuronal
and muscle tissues [4]. Such Ca2+ transients can regulate
gene transcription in a variety of cells including, among
others, those of neuronal [24, 25, 90], cardiac [65] and
endocrine [105] origins. Cytosolic Ca2+ can also modify
the function of certain classes of enzymes like the ki-
nases, phosphatases and phospholipases [16, 71]. Cellu-
lar Ca2+ is intimately involved in progression through the
different phases of the cell cycle [6, 13, 56, 66]. A con-
sistent feature around mitosis is the occurence of Ca2+

transients [32, 55]. These Ca2+ transients regulate both
entry of the fertilized egg to the next stage of the cell
division cycle, and exit of somatic cells from mitosis
[55]. Finally, a rise in Ca2+

i is a key event in initiating
muscle contraction [20]. In addition to entry of extracel-
lular Ca2+, to a large extent, cytosolic Ca2+ signals are
generated from intracellular Ca2+ stores that have se-
questered Ca2+ within them. Ca2+ within the intracellu-
lar Ca2+ stores serves important biological functions in
its own right [67], regulating processes like protein syn-
thesis (for example, by modifying the phosphorylation
status of initiation factor 2 [95]), protein processing (by

affecting function of luminal chaperones like Bip [31]),
membrane trafficking between the endoplasmic reticu-
lum and golgi complex [42], nucleo-cytoplasmic trans-
port [75], and regulation of the store-operated calcium
currentsICRAC [73].

The sarco/endoplasmic reticulum Ca2+ transport
ATPase (SERCA) plays a fundamental role in regulating
cytosolic Ca2+ signals, as well as Ca2+ within the endo-
plasmic reticulum (ER), the sarcoplasmic reticulum (SR)
and the nuclear envelope [77], through the establishment
and maintenance of intracellular Ca2+ stores. Its primary
function is to accumulate and maintain Ca2+ within the
intracellular stores against a steep concentration gradient
via ATP-dependent transport. In muscle tissues SER-
CAs help reaccumulate Ca2+ into the SR during the re-
laxation phase of muscle contraction.

SERCA Function

Three principle isoenzymes of SERCA (i.e., SERCA1,
2 and 3) have been cloned and their splice variants
identified [10, 28, 57, 58]. The SERCA1 gene encodes
two alternatively spliced isoforms, SERCA1a (adult)
and SERCA1b (fetal), which are expressed exclusively
in fast twitch skeletal muscle [8, 9, 59]. The SERCA2
gene also encodes two alternatively spliced isoforms,
SERCA2a and SERCA2b, which diverge in their C-
termini [28, 58]. SERCA2a is the predominant isoform
expressed in heart and slow twitch skeletal muscle [2],
while SERCA2b is expressed in multiple tissues, includ-
ing smooth muscle and most nonmuscle tissues [28, 58].
Two isoforms of SERCA3 have also been recently
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cloned and characterized [78], and are found primarily in
endothelial, epithelial and hematopoietic cells [1, 10,
107].

The overall topology and mechanism of action of the
various SERCA isoforms are similar [38, 60]. After two
molecules of cytosolic Ca2+ bind cooperatively to each
molecule of SERCA, utilization of ATP occurs within
the cytosolic head of the enzyme, resulting in the forma-
tion of a phosphorylated intermediate (EP). Consequent
conformational changes in EP cause release of bound
Ca2+ into the lumen of the ER/SR. With respect to the
binding of Ca2+ to SERCA, earlier mutational studies
provided indirect evidence for the involvement of six
amino acid residues within four transmembrane domains
(M4, M5, M6, and M8) of SERCA [17]. Improvements
in expression and recovery of exogenous SERCA has
recently allowed a more direct demonstration of Ca2+

binding defects in mutant SERCAs [97], confirming ear-
lier reports on Ca2+ binding. Interestingly, mutations in
the cytosolic loop between transmembrane domains M6
and M7 also affect Ca2+ binding [21], perhaps introduc-
ing structural perturbations near the Ca2+ binding do-
main.

Transient [64] and stable [36] expression of SERCA-
encoding cDNAs in mammalian cell lines have been
used to study various aspects of SERCA function. More
recently, adenovirus-mediated gene transfer of SERCA
isoforms in cardiac myocytes has been utilized to study
SR Ca2+ transport [26, 40]. Transgenic mouse models
have also been developed to study cardiac function in
vivo [30, 43]. Although the patterns of expression of the
SERCA transgenes and endogenous genes can be com-
plex [30, 43], the fact that the fast-twitch skeletal muscle
SERCA1a isoform exhibits functional properties that are
similar to the cardiac SERCA2a isoform when expressed
within the context of a cardiac background [43] suggests
that a high degree of functional homology exists between
the various isoforms of SERCA. This is also reflected in
studies addressing the regulation of SERCA function
with phospholamban, which under normal physiological
conditions modifies SERCA2a function [93]. However,
in vitro as well as in vivo studies utilizing transgenic
expression of phospholamban in fast-twitch skeletal
muscle demonstrate that it can also regulate SERCA1
function [94].

A mouse knockout model, in which one of the two
SERCA2 genes was disrupted by gene targeting, has
been described [76]. Although SERCA2 null mutant
mice could not be obtained, in the heterozygous mutants
cardiac function was impaired, suggesting that for nor-
mal cardiac function both copies of the SERCA gene are
necessary [76]. In contrast to SERCA2, null mutants
with respect to the SERCA3 gene, which has a much
more restricted tissue distribution pattern, can be ob-
tained via gene targeting. Even though no overt patho-

physiological abnormalities are observed in such mu-
tants, defects in endothelial cell Ca2+ signaling and
endothelium-dependent vascular smooth muscle relax-
ation are seen [53]. Since SERCA2b continues to be
expressed in these endothelial cells but does not appear
to provide compensation for the SERCA3 deficit [53],
this underscores the fact that the various SERCA iso-
forms can subserve overlapping as well as distinct physi-
ological functions. These latter observations are also
consistent with the recent demonstration that distinct
subcellular distribution patterns of SERCA2 and
SERCA3 can exist in certain epithelial cells [49].

Recently, potential changes/disruption in SERCA
function as a consequence of certain mutations within
specific SERCA genes have been linked to the two hu-
man disorders Brody disease and Darrier-White disease
[72, 88]. In Brody disease, which is a rare recessive
skeletal muscle disorder of muscle relaxation, mutations
within the SERCA1 gene are found [72]. In Darrier-
White disease, which is a dominantly inherited disorder
characterized by abnormal skin plaques, blisters and dys-
keratosis, a variety of alterations within the SERCA2
gene (including deletions, insertions and missense muta-
tions) have been reported [88]. Altered Ca2+ signaling
within the epidermal cells due to loss of SERCA2 func-
tion may contribute to abnormal desmosomal attach-
ments between cells within the epidermis, resulting in
some of the clinical manifestations seen in this disease
[88].

Regulation of SERCA Expression and Function

Due to a central role of SERCAs in Ca2+ homeostasis, it
is not surprising that regulation of SERCA expression is
rather complex and not completely understood. Expres-
sion of SERCA is not only developmentally regulated,
but also occurs in a tissue-specific manner. For instance,
during fast-twitch skeletal muscle development from fe-
tal/neonatal to adult stage SERCA2a is replaced by
SERCA1b [2], while in slow-twitch skeletal muscles and
cardiac muscles SERCA2a remains the predominant iso-
form in both fetal and adult stages [22].

Certain hormones [85, 111] and growth factors like
PDGF [61, 62] can regulate expression of SERCA. In
aortic smooth muscle cells (SMC), PDGF appears to
preferentially upregulate SERCA2a [61, 62]. Further-
more, this upregulation coincides with the entry of SMC
from G1 into S phase of the cell cycle, and seems de-
pendent upon the Ca2+ influx induced by the PDGF treat-
ment of cells [62]. In contrast, SERCA2b is not modu-
lated by PDGF, suggesting that SERCA2a and 2b may
serve different but potentially complimentary physi-
ologic roles in response to PDGF-induced stimulation
[62]. However, it is not at all clear how such differential
regulation comes about since both SERCA2a and 2b are
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likely to be controlled by the samecis-regulatory pro-
moter elements. Another level of complexity with re-
spect to SERCA regulation is observed during T cell
activation [48]. Mobilization of cellular Ca2+ and acti-
vation of protein kinase C (PKC) (i.e., conditions that
activate T cells) lead to isoform-specific modulation of
SERCA, with SERCA3 levels decreasing by approxi-
mately 90% and SERCA2 levels increasing twofold [48].
Although the biological significance and the molecular
basis for such differential regulation is not clear, calci-
neurin-dependent signaling has been implicated in
modulating SERCA expression in the T lymphocytes
[48].

In addition to being regulated by certain hormones
and growth factors, SERCA expression and function can
be affected by various pathophysiological states.
SERCA2a expression decreases in instances of patholog-
ic cardiac hypertrophy such as pressure overload-in-
duced hypertrophy, as well as in hypothyroid states [3,
11]. Physiologic cardiac hypertrophy and thyrotoxic car-
diomyopathy, on the other hand, are associated with in-
creased levels of SERCA2a mRNA [11, 84]. Thyroid
hormone response elements have been identified in both
the rat and rabbit SERCA2 promoters [84], and may in
part mediate some of the thyroid hormone-dependent
SERCA2 responses. Multiple factors are involved in the
development of both physiologic and pathologic cardiac
hypertrophy, with norepinephrine (NE) playing a signifi-
cant role primarily in the latter [69]. Interestingly,
SERCA2 expression is differentially modulated by thy-
roid hormone and NE in ventricular myocytes in culture,
with the responses in part dependent upon the contrac-
tion state of the cells [69]. The specific signaling path-
ways utilized by NE and thyroid hormone may account
for the differences in response of SERCA to these ago-
nists, although it is not yet clear whether such differential
effects occur at the level of transcription [69]. The Raf-
MEK-ERK signaling pathway has been implicated in the
development of some of the molecular changes associ-
ated with cardiac hypertrophy and failure, including
downmodulation of SERCA2 expression [33]. Abnor-
malities in Ca2+ homeostasis can also modify SERCA
levels. For instance, mutant “leaky” ryanodine receptors
that are associated with higher basal levels of cytosolic
Ca2+ can result in induction of SERCA2, perhaps as a
compensatory response [100].

The ubiquitous second messenger nitric oxide (NO)
has been implicated in diverse biological processes, in-
cluding regulation of cellular Ca2+ homeostasis. It is
produced by the action of nitric oxide synthase (NOS) on
endogenous substrates likeL-arginine, and subsequently
modulates the various cellular effects via both cGMP-
dependent and -independent pathways [81, 96]. Endo-
thelium-dependent vascular smooth muscle vasodilation
is dependent upon NO-mediated regulation of cytosolic

Ca2+ levels. Recent studies with primary cultures of aor-
tic smooth muscle cells suggest that NO increases
SERCA-dependent uptake of Ca2+

i, with the consequent
refilling of the intracellular stores resulting in inhibition
of agonist-induced capacitative Ca2+ influx [18]. Other
studies have suggested that NO’s effects on SERCA ac-
tivity may be partly mediated by cGMP-dependent phos-
phorylation of phospholamban [45], although direct ac-
tions of NO on the SERCA protein itself could also
contribute to its overall regulation [18]. Similar experi-
ments in platelets demonstrate that NO stimulates
SERCA-dependent refilling of intracellular Ca2+ stores
[101]. On the other hand, SERCA1 activity of skeletal
muscle is inhibited by NO, and appears to occur via
direct effects on the ATPase [41]. Recently, neuronal
NOS has been shown to be present in cardiac SR mem-
branes where it can potentially modulate SERCA activity
by production of endogenous NO [108]. In particular,
cardiac SERCA2a-dependent Ca2+ uptake is inhibited by
NO action [108]. Thus, it seems that positive or negative
regulation of SERCA activity by mediators like NO is, to
a certain extent, dependent upon the cellular context in
which SERCA is expressed.

Functional Consequences of SERCA Inhibition

Specific inhibition of SERCA can be achieved with sev-
eral agents [39]. Of these, thapsigargin (TG) has proven
to be particularly useful due to its high specificity and
affinity for SERCA [87]. It has been used extensively
not only to study the structural and functional properties
of SERCA, but also to analyze the cellular consequences
of inhibiting SERCA-dependent Ca2+ transport function.
TG, by inhibiting SERCA, prevents the re-uptake of cy-
tosolic Ca2+ back into the Ca2+ storage compartments,
resulting in a rise of Ca2+ within the cytoplasm. Many of
the biological consequences of TG on cell function, in-
cluding alterations in signaling, gene expression, Ca2+

entry, cell proliferation and apoptosis, can be attributed
to a rise in cytosolic Ca2+ and/or depletion of intracellu-
lar Ca2+ pools that occur as a result of the SERCA pump
inhibition.

It was shown in early studies that SERCA inhibition
by TG interferes drastically with the occurrence of cy-
tosolic Ca2+ transients and contractile activation in car-
diac myocytes, while myolemmal electrical excitability
remains unaffected [46]. These studies demonstrated
clearly the prominent role of SERCA in contractile ac-
tivation and relaxation of heart muscle.

Depletion of Ca2+ from within the Ca2+ storing or-
ganelles by TG-mediated inhibition of SERCA activity
can activate entry of extracellular Ca2+ into the cyto-
plasm, a process termed capacitative Ca2+ entry [5, 80].
In excitable cells, depletion of organellar Ca2+ results in
Ca2+ entry through voltage- and ligand-gated Ca2+ chan-
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nels present within the plasma membrane, with cytosolic
Ca2+ itself providing one potential regulatory mechanism
for modulating the Ca2+ influx through such channels
[52]. In nonexcitable cells, Ca2+ store depletion acti-
vates Ca2+ entry through store-operated Ca2+ channels
(SOCC), the molecular identity of which have yet to be
clearly defined. However, Ca2+ currents through SOCC
have been directly measured in a number of cell lines,
with some of the heterogeneity with respect to their bio-
chemical and biophysical properties possibly reflecting
the existence of different isoforms of SOCC [34, 54, 74].
The mechanisms regulating SOCC may include direct
protein-protein interactions between the ER and the
plasma membrane [5] and/or diffusible messengers [82].
Although the nature of such diffusible messengers have
yet to be determined, recent studies suggest that these
factors appear to be conserved between yeast and mam-
malian cells [19]. Inactivation of the SOCC currents
may occur as a consequence of refilling of the internal
Ca2+ stores and/or Ca2+

i-dependent inactivation of Ca2+

influx [5]. In this regard, SERCA activity can modulate
the Ca2+ dependent feedback inhibition of the SOCC
current by regulating the Ca2+

i concentration at the sites
of Ca2+ entry. It has been suggested that increased
SERCA activity can occur as a consequence of store
depletion, resulting in low Ca2+

i in the vicinity of Ca2+

influx and therefore a greater SOCC current [68]. Since
SERCA activity can regulate the SOCC current, inhi-
bition of its function by agents like TG may be less
effective in stimulating the inward current than circum-
stances where the stores are depleted but SERCA activity
is preserved (for example, with IP3-generating agonists)
[54].

Various cell signaling functions can be potentially
modified by Ca2+ transients that are induced as a conse-
quence of TG-mediated inhibition of SERCA, including
those mediated by certain kinases, phosphatases, lipases,
proteases and ion channels. For instance, TG has re-
cently been implicated in some of the signaling pathways
mediated by the mitogen-activated protein kinases
(MAPKs). In particular, TG can activate the MAPK/
ERK family of kinases [14]. Both Src and Rafl kinase
activities appear to be necessary for the TG-dependent
activation of ERK, although the Ca2+ influx component
that occurs upon TG treatment does not seem to be re-
quired for ERK activation by TG [15]. Another member
of the MAPK family, i.e., JNK, can also be activated by
TG in certain cells via a nonreceptor Ca2+-dependent
tyrosine kinase termed CADTK/PYK2 [51].

Among the first genes shown to be modulated by TG
were the immediate early genes c-fos and c-jun [89].
Their induction was shown to occur via increased tran-
scription, and was dependent upon the rise in Ca2+

i as a
result of SERCA inhibition by TG [89]. Interestingly,
c-fos transcription seemed to occur via the SRE promoter
element and not the Ca2+/cAMP response element [89].

Both TG and cyclopiazonic acid, which is another
SERCA pump inhibitor, can cause a rapid increase in
IL-6 mRNA and protein levels in macrophages [7]. Al-
though a rise in cytosolic Ca2+ due to SERCA inhibition
most likely contributes to the increase in IL-6 message,
entry of extracellular Ca2+ may not be obligatory for this
rapid increase in IL-6 levels [7]. In contrast, TG-medi-
ated transcription of stress-response genes like grp78 is
dependent upon the gradual depletion of intracellular
Ca2+ stores rather than a rise in Ca2+

i [50]. Unique re-
sponse elements (RE) have been identified within the
grp78 promoter, binding of transcription factors to which
is inhibited by Ca2+ [50, 86] and modulated by tyrosine
kinase activity [12]. Similarly, the other ER resident
protein calreticulin has been shown to harbor TG-sensi-
tive RE, and is also transcriptionally regulated by the
status of intracellular Ca2+ pools rather than extracellular
or cytosolic Ca2+ [104]. Transient inhibition of protein
synthesis as a result of TG treatment, with the subsequent
activation of stress response signaling, has been pro-
posed as another mechanism for initiating gene transcrip-
tion [63]. Upregulation of gene expression is not the
only outcome of TG treatment. In human prostate cancer
LNCap cells, for example, TG causes a decrease in an-
drogen receptor mRNA levels, although the mechanisms
leading to this downmodulation are not clear [27].

Mobilization of intracellular Ca2+ stores by agents
like TG can alter the phosphorylation status of eukary-
otic initiation factors and disrupt protein processing at
the level of translation initiation [79]. A human homo-
logue of the yeast translation initiation factor eIF(SUI1),
termed eIF1A121/SUI1, has recently been cloned from a
genotoxic-stress induced cDNA subtraction library, and
found to be upregulated by ER Ca2+ pool depletion [91].
Thus, modification and/or induction of factors involved
in protein synthesis and processing can occur upon in-
ducing ER stress to cells. Although some of these
changes may be part of a cell’s defense response to the
toxic insults, TG-mediated depletion of Ca2+ stores can
result in cell growth arrest [92] and/or induction of ap-
optosis [44]. Depending upon the system under study,
the different consequences of TG treatment (Ca2+ influx,
rise in cytosolic Ca2+, Ca2+ pool depletion) have varying
degrees of effects on the induction of apoptosis. For ex-
ample, in prostate cancer cells the resulting elevation in
cytosolic Ca2+ levels upon treatment of the cells with TG
appears to be necessary for inducing apoptosis [23]. In
insulin-secreting MIN6 cells and hypothalamic GT1-7
cells, on the other hand, it is the depleted state of the
Ca2+ stores rather than Ca2+ influx or elevated Ca2+

i that
triggers TG-induced apoptosis [106, 113]. Arachidonic
acid metabolites [113] and components of the caspase
cascade [99] can participate in the execution of TG-
mediated apoptosis, while bcl2, by potentially altering
cellular Ca2+ homeostasis, may have a protective effect
[47, 106].
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Adaptive Responses to SERCA Inhibition

Highly specific and irreversible stoichiometric interac-
tions between TG and SERCA produce a stable enzyme-
inhibitor dead-end complex, resulting in global disrup-
tion of SERCA’s biological functions [87]. A combina-
tion of studies have recently led to a better understanding
of the TG binding topology. Since TG inhibits only
SERCA, and not other cation transport ATPases, chi-
meric exchanges between SERCA and Na+,K+-ATPase
were used to assess TG-SERCA interactions. In initial
studies, chimeric recombinations between SERCA1 and
Na+,K+-ATPase (which is not sensitive to TG) suggested
that a 30 amino acid residue within the S3, M3 domain of
SERCA maybe involved in the interaction of the enzyme
with TG [70, 98]. This was also consistent with the pho-
tolabeling data using TG azido derivatives [35]. More
recently, site directed mutagenesis has shown a specific
role of the S3 domain in such interaction [112].

By binding to SERCA and disrupting intracellular
Ca2+ homeostasis, TG can inhibit cell proliferation and
cause cell death. However, using stepwise selection,
mammalian cell lines that are highly resistant to TG in-
hibition can be developed [29]. In many of the TG-
resistant cell lines, the multidrug resistance transporter
p-glycoprotein (pgp) is overexpressed [29]. Moreover,
transfection of pgp-encoding cDNAs into wild-type TG-
sensitive cells can render the transfectants resistant to TG
inhibition, suggesting that TG is a substrate for the mul-
tidrug transporter [29]. In addition, SERCA is overex-
pressed in TG-resistant cells. Interestingly, introduction
of exogenous SERCA into hamster cells followed by TG
selection results in overexpression of both the endog-
enously expressed SERCA and the transfected SERCA
[29]. Thus, irrespective of whether SERCA is under the
control of its natural promoter or a heterologous pro-
moter, increased production of SERCA protein is an im-
portant adaptive response to the selective inhibition of
the ATPase. The mechanisms underlying this increased
production of the enzyme have been investigated in TG-
resistant hamster smooth muscle cells [83]. Increased
transcription of the SERCA gene can occur in the TG-
resistant cells, which appears to be dependent upon the
recruitment of newcis-regulatory elements, in addition
to the known promoter elements that are normally in-
volved in SERCA gene transcription [83]. Amplification
of the SERCA gene, leading to increased SERCA mes-
sage and protein, can also occur upon development of the
TG-resistant phenotype [83].

The fact that TG-selected cells continue to prolifer-
ate in the presence of high levels of TG suggests that they
are likely to maintain many of the Ca2+ store-dependent
signaling functions necessary for growth and division.
Such Ca2+ signaling pools were in fact shown to exist in
the TG-resistant cells [37, 102, 103]. However, the dis-
proportionately high concentrations of TG, relative to the

amounts of recovered ATPase, required to inhibit the
Ca2+ pumping activity within these cells suggested that a
TG-resisant ATPase(s) is also likely to exist in such cells
[37]. Cloning and sequencing studies identified that one
particular amino acid residue within the S3 domain of
SERCA, i.e., the putative TG binding site, undergoes
specific mutations upon TG selection [109, 110]. That
is, the Phe256 residue can undergo specific mutations
(Phe→ Leu, Phe→ Ser or Phe→ Val) in the TG-re-
sistant cells, with the different substitutions conferring
varying degrees of resistance to TG inhibition while
maintaining functional competence of the enzyme [109,
110]. Thus, several processes can participate in the
adaptive response to TG selection, including overexpres-
sion of pgp, overexpression of SERCA, and alterations in
SERCA, with each contributing to the overall TG-resis-
tant phenotype.

Conclusions

SERCAs are key enzymes involved in modulating Ca2+-
dependent signaling and maintaining Ca2+ homeostasis
within cells. A combination of biochemical and genetic
approaches have begun to clarify their function and regu-
lation in normal as well as altered states of Ca2+ homeo-
stasis. A particularly useful approach in this regard has
been with the use of highly specific inhibitors of SERCA
function. Better understanding has occurred not only
with respect to the mechanisms of SERCA inhibition, but
also with regards to the cellular consequences and adap-
tive responses to such inhibition of their function.
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